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Nonlinear techniques have found an increasing interest in the dynamical analy-
sis of various kinds of systems. Among these techniques, entropy-based metrics
have emerged as practical alternatives to classical techniques due to their wide
applicability in different scenarios, specially to short and noisy processes. Issued
from information theory, entropy approaches are of great interest to evaluate the
degree of irregularity and complexity of physical, physiological, social, and econo-
metric systems. Based on Shannon entropy and conditional entropy (CE), various
techniques have been proposed; among them, approximate entropy, sample en-
tropy, fuzzy entropy, distribution entropy, permutation entropy, and dispersion
entropy are probably the most well-known. After a presentation of the basic
information-theoretic functionals, these measures are detailed, together with re-
cent proposals inspired by nearest neighbors and parametric approaches. More-
over, the role of dimension, data length, and parameters in using these measures
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is described. Their computational efficiency is also commented. Finally, the
limitations and advantages of the above-mentioned entropy measures for practi-
cal use are discussed. The Matlab codes used in this Chapter are available at
https://github.com/HamedAzami/Univariate_Entropy_Methods.
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1. Introduction

Dynamical analysis is a popular and powerful method for understanding biological

systems. A dynamical system is described by two elements: state and dynamics.

The state of a dynamical system is determined by the values of all the variables

describing the system at a specific time. Therefore, the state of a system represented

by ι variables can be shown by a point in an ι-dimensional space. This space is

termed the state or phase space of the system. The dynamics of the system is the

set of laws or equations describing how the state of a system changes during time.1

Physiologists and clinicians are often confronted with the problem of distinguish-

ing different kinds of dynamics in biomedical signals, such as heart rate tracings

from infants who had an aborted sudden infant death syndrome versus control in-

fants,2 and electroencephalogram (EEG) signals from young versus elderly people.3

A number of physiological time series, such as cardiovascular and brain activity

recordings, show a nonlinear in addition to linear behaviour.4–7 Moreover, several

studies suggested that physiological recordings from healthy subjects have nonlin-

ear complex relationships with ageing and disease.8–10 Thus, there is an increasing

interest in nonlinear techniques to analyse the dynamics of physiological signals.
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There are a number of nonlinear dynamical analysis techniques, such as frac-

tal dimension (FD),11 Lyapunov exponent,12 Lempel-Ziv complexity (LZC),13 and

entropy-based metrics.14,15 Among them, entropy methods have emerged as a less

ambitious but more practical alternative to classical techniques for the analysis of

nonlinear dynamical systems due to their applicability to short and noisy processes

with important stochastic components such as those describing the dynamical ac-

tivity of physiological systems.16

Entropy approaches taken from information theory are of great interest for the

evaluation of the degree of irregularity and complexity of physical, physiological,

social, and econometric systems.16 They have been successfully and widely used

in many applications ranging from biomedical engineering and neuroscience to me-

chanical engineering,17 financial data analysis,18,19 climatology,20 earth sciences,21

cellular automata,22,23 and others.24,25

Shannon entropy (ShEn), conditional entropy (CE) and information storage

(IS) are the most common concepts used in the context of analysis of physiolog-

ical signals.8,14,16,26 ShEn and CE respectively show the amount of information

learned and the rate of information production in a system.8,26,27 Based on these

two approaches, various techniques rooted in information theory,14 such as approxi-

mate entropy (ApEn),28 sample entropy (SampEn),29 corrected conditional entropy

(CorCE),30 fuzzy entropy (FuzzyEn),31 permutation entropy (PermEn),32 distribu-

tion entropy (DistEn),33 dispersion entropy (DispEn),27 and fluctuation dispersion

entropy (FDispEn)34 have been proposed.

To show the relevance and usefulness of some of these methods, the evolution of

the number of citations for ApEn,28 SampEn,29 PermEn,32 FuzzyEn,31 DistEn,33

and DispEn27 are reported in Fig. 1. Information was extracted from Ref35 on

September 28, 2020.

These entropy measures have been successfully employed in a wide range of

applications to characterize different pathological states. For example, ApEn was

used to automatically detect epileptic seizures in EEGs.36 ApEn and SampEn were

used to analyze the EEGs and magnetoencephalogram (MEGs) in patients with

Alzheimer’s disease (AD).37 SampEn was used to study heart rate dynamics during

episodes of mechanical ventilation and acute anoxia in rats38 and the analysis of

heart rate variability in diseases and aging.39 CorCE was exploited to investigate

the short-term cardiovascular control in a variety of pathophysiological states.40–42

FuzzyEn-based approaches analyzed a gait maturation database to distinguish the

effect of age on the intrinsic stride-to-stride dynamics and also the Fantasia database

to distinguish short RR interval signals recorded from healthy young vs. elderly

subjects.43 Additionally, Fuzzy ApEn analysis was used to characterize surface

electromyograms (EMGs) to evaluate local muscle fatigue.44 DistEn was used to

analyze heartbeat interval series in healthy aging and heart failure patients33 and

also to discern between emotional states of calm and negative stress (also called

distress).45 PermEn was applied in epilepsy research46,47 and in anesthesiology48,49
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Fig. 1.: Evolution of the number of citations for ApEn,28 SampEn,29 PerEn,32

FuzzyEn,31 DistEn,33 and DispEn27 extracted on September 28, 2020.

using EEGs. DispEn was used to diagnose breathing and movement-related sleep

disorders using electrocardiograms (ECGs) and EMGs.50 DispEn and FDispEn

were used to help clinicians in diagnosing AD and mild cognitive impairment using

MEG signals.51

In spite of the broad relevance and applications of entropy metrics for various

biological systems, a number of issues exist which often prevent a fair assessment of

the performance of these approaches in addition to a correct interpretation of the
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measured complexity or irregularity of the observed dynamics. First, there are var-

ious entropy methods which have not been systematically compared from different

theoretical, computational and practical views. Second, the relationships between

the parameters used in these entropy approaches have not been discussed as well.

Third, the correlation between these entropy approaches have not studied empiri-

cally and theoretically. Here, apart from addressing the aforementioned issues, we

provide a unifying framework for the definition of entropy metrics and correspond-

ing estimation methods from time series, which serves to clarify their theoretical

meanings and assess their practical significance in the assessment of the complexity

of dynamic processes measured from physical systems.

The next Section of this article provides an overview of the theory used in

entropy based on information theory. Section 3 details the key entropy methods

used for biomedical signals. Role of dimension, data length and parameters are

described in Sec. 4. The computational efficiency of the entropy approaches are

evaluated in Sec. 5. The limitations and advantages are discussed in Sec. 6. Finally,

the conclusions and future directions are outlined in Sec. 7.

2. Entropy measures for signal analysis: Theory

2.1. Basic information-theoretic functionals

This introductory section recalls the basic concepts of probability and information

theory which will be used to define entropy measures for signal analysis. In a

probabilistic framework,52 a random variable is a mathematical variable whose value

is subject to variations due to chance. A random variable V can be either discrete or

continuous, respectively when it can take values inside a countable set of values (i.e.,

the alphabet AV ), or inside a continuous set of values (i.e., the domain DV ). If the

random variable V is discrete, its probability distribution is a function mapping each

possible outcome v ∈ AV into a number p(v) = Pr{V = v}, where Pr{·} denotes

the probability of an event; in the continuous case, the probability density is defined

as the derivative of the cumulative distribution function FV (v) = Pr{V ≤ v}, i.e.,

p(v) = dFV (v)
dv , v ∈ DV . These definitions extend in a straightforward way to the

generic k−dimensional variable W = [W1, . . . ,Wk] by defining the joint probability

distribution p(w) = Pr{W1 = w1, . . . ,Wk = wk} in the discrete case, and the joint

probability density p(w) = dFW (w)
dw , with FW (w) = Pr{W ≤ w}, in the continuous

case. Moreover, the conditional probability density of V given W expresses the

probability of observing the value v for V given that the values w = [w1, . . . , wk]

have been observed for W : p(v|w) = p(v,w)
p(w) .

Probability distributions are represented in a compact way in the framework of

information theory.53 The central concept in this framework is the Shannon infor-

mation content of a random variable V :54 the information contained in a specific

outcome v of a random variable V is the quantity h(v) = − log p(v). The infor-

mation content, which is typically measured in bits (base 2) for discrete random
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variables or in nats (base e) for continuous variables, is low for highly probable out-

comes of the observed random variable, and very high for unlikely outcomes. Then,

the entropy of V , quantifying the information contained in the variable intended as

the average uncertainty about its outcomes, is defined as the expected value of the

information content:

H(V ) = E[h(v)] = −E[log p(v)], (1)

where E[·] is the expectation operator. The concept of entropy defined in Eq. (1)

relies on the seminal work of Shannon performed in the field of communication

theory.54 In this context, entropy quantifies the information contained in a random

variable intended as the average uncertainty about its outcomes: if all observations

of the variable are the same, there is no uncertainty and the entropy is zero; if,

on the contrary, the variable takes different values all with the same probability of

occurrence, the entropy is maximum and reflects maximum uncertainty.

The definition of entropy extends readily to a vector variable W comput-

ing the joint information content h(w) = − log p(w) for the generic outcome

w, and using the joint probability p(w) in Eq. (1) to get the joint entropy

H(W ). Then, the conditional information content of v given w is the quantity

h(v|w) = − log p(v|w) = h(v,w) − h(w), measuring the amount of information

carried by the specific outcome v of the variable V when the variable W takes the

value w. Again, moving to expected values yields CE of V given W :

H(V |W ) = E[h(v|w)] = −E[log p(v|w)] = H(V,W )−H(W ), (2)

which quantifies the residual information contained in V when W is assigned, in-

tended as the average uncertainty that remains about the outcomes of V when the

outcomes of W are known.

Another important information measure characterizing the interaction between

two variables is the mutual information (MI). The specific MI between the outcomes

v and w of the two variables V and W is the information that the two outcomes

contain when they are taken individually but not when they are taken together,

i.e. i(v;w) = h(v) + h(w)− h(v,w) = h(v)− h(v|w). The expected value over all

outcomes corresponds to the MI between the two variables V and W :

I(V ;W ) = E[i(v;w)] = E[log
p(v|w)

p(v)
] = H(V )−H(V |W ), (3)

measuring the amount of information shared between V and W intended as the

average reduction in uncertainty about the outcomes of V obtained when the out-

comes of W are known.

The definitions provided above for the main information-theoretic measures are

formalized in a different way for discrete and continuous random variables, depend-

ing on how the expectation operator is implemented in the two cases. In the discrete

case, given a scalar random variable V and a vector variable W , the entropy of V
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and the CE of V givenW are obtained particularizing Eq. (1) and Eq. (2) as follows:

H(V ) = −
∑

v∈AV

p(v) log p(v),

H(V |W ) = −
∑

v∈AV

∑
w∈Aw

p(v,w) log p(v|w).
(4)

When the variables are continuous, the sums extended over the alphabet are sub-

stituted by integrals over the domain, so that entropy and CE are expressed as:

H(V ) = −
∫
v∈DV

p(v) log p(v)dv,

H(V |W ) = −
∫
v∈DV

∫
w∈Dw

p(v,w) log p(v|w)dvdw.

(5)

In either case, the MI can be computed from entropy and CE using Eq. (3).

The definitions of entropy, CE and MI provided here for generic random vari-

ables, particularized to the variables obtained sampling a random process at dif-

ferent time instants, are exploited in the next subsection to define the entropy

measures typically used for signal analysis. Moreover, the distinction between dis-

crete and continuous random variables is at the basis of the different approaches for

entropy estimation presented in Sec. 3; for instance, the linear and nearest neighbor

estimators attempt to compute the continuous probability density functions of the

amplitude values of the observed time series, while the binning estimator discretizes

such amplitude values and then operate through computation of discrete probability

distributions.

2.2. Shannon entropy measures for stochastic processes

The computation of entropy measures for signal analysis is grounded in a prob-

abilistic framework, in which estimators of the entropy measures defined in the

previous subsection are applied to the signal samples in order to characterize their

statistical structure. To introduce the context, let us consider a physiological sys-

tem and a biomedical time series extracted from it; for instance, the system can be

the brain or the heart, and the time series a sampled EEG signal acquired on the

scalp or the heart rate variability measured from the ECG. The observed system is

supposed to be a dynamical system (i.e., a system that assumes diverse states at

different instants of time), and stochastic (i.e., a system whose current state does

not depend only on its inputs and initial state but also on the outcome of a random

experiment). The time series measured from the system is taken as a quantitative

indicator of the system’s states and, as such, is considered as a realization of the

stochastic process that maps the evolution of the system over time. Then, in an

information-theoretic framework, the “information” contained in the system varies

with time in a way such that, in the transition from past states to a new state, the

system produces new information in addition to that already carried by the past

states. The information content of a dynamical system is quantified by entropy
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measures computed on the associated stochastic process:16 the entropy quantifies

the information carried by the present state of the process; the conditional entropy

quantifies the new information contained in the present but not in the past; and

the information storage quantifies the amount of information carried by the present

that can be explained by the past history of the process.

Let us denote X as the observed dynamical system and X as the correspond-

ing stochastic process. A specific realization of the process is the time series

x = {x1, . . . , xN}, where N is the time series length. Let us further denote Xn

as the random variable obtained by sampling the process X at the present time n,

and X−n = [Xn−1, Xn−2 . . .] as the vector variable describing the past of X. Separat-

ing the present state Xn from the past states X−n allows to account for the arrow of

time and to study the dynamic interactions within the process by looking at the sta-

tistical dependencies of Xn on X−n .55 Indeed, the statistical structure of the process

at the current time step is provided by the probability distribution p(xn), measuring

the probability that X takes the value xn at time n, while the transition from past to

present is described by the conditional probability p(xn|x−n ), measuring the proba-

bility that Xn takes the value xn when X−n assumes the value x−n = [xn−1, xn−2, . . .].

If the joint probability p(x−n ) of the past states is assigned, the behavior of the sys-

tem is completely known from a probabilistic perspective because the joint probabil-

ity p(xn,x
−
n ) = p(xn|x−n )p(x−n ) can be computed from the transition probabilities.

Moreover, we note two important properties which are commonly exploited for the

estimation of probability distributions and entropy measures. The first is station-

arity, which defines the time-invariance of the joint probabilities extracted from

the process: p(xn,x
−
n ) = p(xn+m,x

−
n+m) ∀ n,m ≥ 1. The second is the Markov

property, which states the absence of memory of the process for time steps larger

than the Markov order m: p(xn|X−n ) = p(xn|xn−1, . . . , xn−m). In practical analysis,

exploiting the Markov property allows to approximate the infinite-dimensional vari-

able describing the past history of the process with the finite-dimensional variable

describing the past m states, i.e., X−n ≈ Xm
n = [Xn−1 · · ·Xn−m].

The probability distributions above defined are represented in a compact way

through a number entropy measures which characterize the statistical structure of

the observed process.16,55 In the following, we provide definitions of such measures

computed for a stationary stochastic process. First of all, the entropy of the process

X is defined applying Eq. (1) with V = Xn to get the average information contained

in the present state of X:

E(X) = H(Xn) = −E[log p(xn)]. (6)

For a stationary process, the entropy is a static measure, meaning that it does not

take the temporal information into account since p(xn), and thus H(Xn), are the

same at all times. The dynamic information leading to define entropy rates and

complexity is retrieved considering the past information contained in the system

up to time n− 1 and the total information contained the the system up to time n,

obtained respectively as the joint entropy of the past variables X−n and the joint
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entropy of the present and past variables, as given by:

H(X−n ) = H(Xn−1, Xn−2, . . .) = −E[log p(xn−1, xn−2, . . .)]

H(Xn,X
−
n ) = H(Xn, Xn−1, Xn−2, . . .) = −E[log p(xn, xn−1, xn−2, . . .)].

(7)

These two entropies are combined as in Eq. (2) with V = Xn and W = X−n to

quantify the conditional entropy (CE) of Xn given X−n as:

CE(X) = H(Xn|X−n ) = H(Xn,X
−
n )−H(X−n ) = −E[log p(xn|xn−1, xn−2, . . .)].

(8)

The CE measures the average uncertainty that remains about the present state of

X when its past states are known, reflecting the new information that is available in

the present state but cannot be inferred from the past. Entropy and CE are related

to each other by the so-called information storage, defined as the MI computed as

in Eq. (3) with V = Xn and W = X−n :

IS(X) = I(Xn; X−n ) = E[log
p(xn|x−n )

p(xn)
] = H(Xn)−H(Xn|X−n ). (9)

The IS measures the average uncertainty about the present state of X that is re-

solved by the knowledge of its past states, reflecting the amount of information

shared between the present and the past observations of the process.

To summarize, the entropy of a dynamical system measures the information

contained in its present state. The information of the present state can then be

decomposed to two parts: the new information that cannot be inferred from the

past, which is measured by CE and the information that can be explained by its

past, which is measured by the information storage. Consequently, entropy, CE

and information storage are related to each other by the equation IS(X) = E(X)−
CE(X).

2.3. Entropy rate and complexity

Considering that a dynamical system varies its state over time, it naturally comes

up the idea of quantifying how the information in the system varies with time, so

that the dynamical properties of the system can be captured. One possibility is

to calculate the average rate at which the information is produced by the system.

This concept was mathematically defined by Kolmogorov56 and Sinai,57 leading to

the so-called Komogorov-Sinai (KS) entropy:

KS(X) = lim
n→∞

1

n
H(Xn,X

−
n ), (10)

where H(Xn,X
−
n ) is defined in Eq. (7), representing the total information contained

in the process X up to the present time (instant n). Thus, if the information of

the system increases with time, the KS entropy captures the average amount of

information gained at each time step n. On the contrary, if the information of the

system does not change over time, in the limit n→∞, the KS entropy will be zero.
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The idea of entropy rate is also intrinsically related to the concept of CE. The

information created by the system at each instant of time is given by CE(X) =

H(Xn|X−n ) – Eq. (8) – and represents the information contained in the system

at the present time n that cannot be explained by the past up to time n. Thus,

the asymptotic value of CE (n → ∞) is another way to define the average rate

of information produced by the system. In fact, it can be proved58 that, under

stationary conditions, both limits exist and are equal, i.e.:

lim
n→∞

1

n
H(Xn,X

−
n ) = lim

n→∞
H(Xn|X−n ). (11)

For the analysis of biomedical signals, the limits of Eq. (11) cannot be satisfied,

once the recorded signals are always finite in time. However, since stationarity is

assumed, the CE is not expected to change over time. Therefore, in practice, the

algorithms utilized to calculate CE takes into account only the available (finite)

samples of the signals and can be considered as statistics (approximations) of the

theoretical CE. In general, the larger the number of samples, the better the estimate

provided by the algorithm. Examples of algorithms proposed to estimate the CE

from signals are discussed in further sections of this chapter. They include methods

to estimate probability densities based on binning, nearest neighbor techniques, or

kernel functions; in particular, the use of different kernels leads to the CE estimates

known as approximate entropy, sample entropy, and fuzzy entropy.

It is very important to understand the meaning of entropy rate or CE in the

context of signal analysis. When most of the information produced by the system

cannot be explained by its past, the process generated by the system is assumed

to be highly unpredictable (high CE). In contrast, when the average information

produced by the system at each time is highly explained by its past system states,

the associated process is highly predictable (low CE). In other words, if the infor-

mation contained in the past states of the system is sufficient to provide a good

prediction of the current state, the new information produced by the transition to

the current state is low and CE will also be low. On the contrary, when the past

system states do not carry the necessary information to predict the current state

with good accuracy, the CE will be high. Therefore, CE can be understood as a

measure of unpredictability of time series: fully random processes characterize the

most unpredictable situations, and thus yield maximal CE, while fully predictable

processes characterize the most predictable situations, yielding CE of zero.

The information storage is also related to the predictability of signals. However,

while CE is a measure of the current information not resolved by the past, IS

represents the current information that is resolved by the past. As such, the IS of a

fully random process is zero, as the information carried (stored) in the past values

is not useful at all to predict the information of the current time. In contrast, for

fully predictable processes, the information stored in the past values is useful to

predict completely the current value, so that the IS takes its maximum value.
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The predictability of signals is a key concept in the study of the complexity

of biomedical signals. CE and IS can be directly utilized to represent the system

complexity, with the rationale that the more unpredictable the signal is, the more

complex is the underlying system that generated this signal. However, it is worth

recalling that the hallmark of complex systems is the huge number of elements and

the nonlinear interdependence among them.59 Thus, the characterization of the

system’s complexity through a single signal, i.e., by the study of the dynamics of a

single output of the system (univariate analysis), configures an important limitation.

This is similar to the attempt of studying the properties of a three-dimensional

object through its projection in the bi-dimensional plan. Information will be lost.

For this reason, many approaches for calculating entropy from more than one signal

(multivariate analysis) have been proposed in recent years.60–64

It should be remarked that there is a different interpretation in which the en-

tropy, or the degree of unpredictability of signals, cannot be directly used to rep-

resent the level of complexity. This interpretation relies on the assumption that

neither a completely ordered nor a completely disordered system configure a com-

plex systems.65,66 For physiological signals, it is argued that the most complex

scenario occurs when the system is operating with its high integrity (healthy con-

ditions), and in such cases, the dynamics of the system (measured by the signals)

are not completely predictable nor completely unpredictable, but some situation in

between these two extremes. Thus, since entropy is essentially a measure of the

signal’s unpredictability, it could not be used directly to quantify the level of com-

plexity.65 On the other hand, another important feature of complex systems is the

presence of structures at multiple scales, both spatial and temporal.65 Many studies

have shown that the calculation of entropy for different time scales of a signal can

reasonably represent the physiological complexity of living organisms, i.e. assign-

ing higher levels of complexity to healthy systems and lower to diseased or elderly

individuals.8,67,68

Whether the complexity of biomedical signals can be characterized by a direct

or an indirect measure of entropy remains a matter of debate and depends on

the understanding of complexity. However, one thing is certain: no matter what

formulation is proposed to quantify the level of complexity, entropy will certainly

take part in it.

3. Methods for entropy estimation

This section introduces some of the most used entropy methods applied to biomedi-

cal signal analysis. They are all derived from the theoretical definitions presented in

the previous section, representing different algorithms for the estimation of Shannon

entropy, CE and IS.
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3.1. Basic definitions

Here we provide some basic definitions and notations that appears more than

once in the definition of entropy methods. Let’s consider an arbitrary signal

x= {x1, . . . , xN}, where N is the length (number of points) of the signal. Note

that the terms “signal” and “time series” are nomenclatures used interchangeably

in this text, representing a sequence of any quantity estimated over time. The con-

sidered signal is taken as a realization of the stochastic process X which quantifies

the states visited over time by the underlying dynamical system. Assuming sta-

tionarity and ergodicity of the process, the entropy measures defined above can be

estimated from the available signal through the methods presented in this section.

Moreover, to estimate dynamic entropies that involve probabilities computed on

the past history of X, the process itself is assumed as a Markov process, so that a

finite number of time-lagged variables can be used to approximate the past; for a

Markov process of order m, the past history X−n is covered by the m-dimensional

vector Xm
n = [Xn−1 · · ·Xn−m]. For the process realization x, the past with memory

m is represented by the vector xm
n = {xn−1, . . . , xn−m}, which is often denoted as

embedding vector. Thanks to stationarity, this is equivalent to define the vector xm
i

as the sequence of values in x from i to i + m − 1, i.e. xm
i = {xi, . . . , xi+m−1}.

Moreover, when there is the need to introduce a temporal spacing between samples

(e.g., in the presence of oversampled signals), the embedding vector may be defined

as xm
i (L) = {xi, xi+L, . . . , xi+(m−1)L}, where L is the time delay. In most of the

definitions provided in the following sections, L = 1 is adopted, unless explicitly

state. However, extensions for L > 1 are straightforward.

Some of the entropy measures presented in this work make use of distances to

estimate probability distributions. The most used metric is the Chebyshev distance,

or maximum norm. The Chebyshev distance between two vectors xm
i and xm

j is

defined as:

d[xm
i ,x

m
j ] = max

0≤k≤m−1
|xm

i+k − xm
j+k|, (12)

and represents the maximum pointwise difference between the vectors xm
i and xm

j .

3.2. Standard binning estimates

The most intuitive approach for the estimation of entropy measures in signal analy-

sis is the so-called binning estimator. This approach is based on performing uniform

quantization of the observed time series and then estimating the entropy approx-

imating probabilities with the frequency of visitation of the quantized states, or

bins.

Considering a stationary stochastic process X that takes values in the con-

tinuous domain DX = [Xmin, Xmax], quantization is an operator transforming X

into a process Xq which takes values in the discrete alphabet AX formed by Q

symbols. Correspondingly, quantization transforms the the continuous variable Xn

that samples the process X at time n into a discrete variable Xq
n with alphabet
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AX = {1, . . . , Q}. In practice, the realizations of Xn are samples of the time series

x = {x1, . . . , xN}, which is coarse grained spreading its dynamics over Q quanti-

zation levels, or bins. The most common strategy is uniform quantization, which

uses bin of equal amplitude r = (Xmax −Xmin)/Q,69 but alternatives exists which

implement a variable bin size chosen to keep constant the number of signal samples

falling into the bin.70,71 The utilization of different transformations from the con-

tinuous to the discrete domain is illustrated in Sec. 3.3, where the related technique,

DispEn, is described.

Quantization assigns to each sample xn, n = 1, . . . , N , the number of the bin to

which it belongs, so that the quantized time series xq = {xq1, . . . , x
q
N} is a sequence

of discrete values belonging to the alphabet AX . Then, under the assumption

of stationarity, the probability of the ith bin, i = 1, . . . , Q, is estimated simply

as the frequency of occurrence of the bin across the quantized time series, i.e.

p(i) = Pr{xqn = i} = Ni/N , where Ni is the number of time series points that fall

into the bin. The probability estimated in this way is then plugged into Eq. (4) to

estimate the entropy of the present state of X according to the definition of Eq. (6):

HBIN (Xn) = −
Q∑
i=1

p(i) log p(i), (13)

As quantization can be performed also for vector variables, this allows to esti-

mate measures like the dynamic entropies and the CE defined in Eq. (7) and Eq. (8).

Specifically, the quantization of the past state vector xm
n = [xn−1, . . . , xn−m] builds

a partition of the m-dimensional state space into Qm disjoint hypercubes of size

r, such that all patterns xm
n obtained from the time series which fall within the

same hypercube are associated with the same m-dimensional bin, and are thus in-

distinguishable within the tolerance r. The same operation can be performed in

the (m+ 1)-dimensional space spanned by the realizations of the present and past

states [Xn,X
m
n ] (vectors [xn,x

m
n ]). In both cases, the discrete probabilities of the

quantized vector variables are estimated as the fraction of patterns falling into the

hypercubes, and can be exploited to compute the dynamic entropy measures (7) as:

HBIN (Xm
n ) = −

Qm∑
i=1

p(i) log p(i),

HBIN (Xn,X
m
n ) = −

Q(m+1)∑
i=1

p(i) log p(i),

(14)

from which the binning estimate of the CE is easily obtained according to (8):

CEBIN (X) = HBIN (Xn,X
m
n )−HBIN (Xm

n ). (15)

Note that the sums in Eq. (14) are extended to the bins which contain at least one

embedding vector.

In addition to being intuitive and simple the binning method is very fast, as the

transformation of the time series values into integer numbers and the application
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of a sorting procedure to the integer labels allows the efficient computation of the

relative frequencies of the embedding vectors.72 However, unfortunately the binning

method provides biased estimates of the CE. The bias arises from the fact that, at

increasing the embedding dimension m, the embedding vectors become more and

more isolated in the state space, and this isolation results in an increasing number of

vectors xm
n found alone inside an hypercube of the m-dimensional quantized space

(single vectors); when xm
n is a single vector, the vector [xn,x

m
n ] is also single inside

an hypercube of the (m + 1)-dimensional space, so that the contribution brought

by these two vectors to the CE is null; this results in an artificial reduction of the

CE estimate that gives a false indication of signal predictability. To counteract this

effect, which is exacerbated increasing the embedding dimension, a corrected CE

(corCE) was defined by adding to the CE estimated as in (15) a corrective term that

takes the percentage of single vectors in the m-dimensional space into account.30

The correction described above compensates the bias in the CE arising from

the lack of reliability of probability estimates due to the shortness of the data

sequence relative to the embedding dimension. Interestingly, it can also serve the

crucial choice of how to embed the past history of the observed process: while

the embedding dimension m is typically constrained to low values to allow reliable

statistics,28 or is set according to complex non-uniform embedding techniques, the

finding that the corCE shows a minimum as a function of m30 provides an objective

criterion for the setting of this parameter. Besides embedding, the fundamental issue

in binning estimation of entropy measures is the strategy adopted to discretize the

observed time series, and the choice about the number of bins to use. Alternative

strategies to uniform quantization are seen in Sec. 3.3 in the context of DispEn. As

regards the number of bins, there is no “optimal” choice for it. Similarly to the case

of other entropy estimators (e.g., SampEn in Sec. 3.4), the choice of the number of

bins represents a trade-off between the precision of the probability estimations and

the robustness to noise.73 Several rules of thumb have been proposed, including

taking the square root of the number of samples in the signal (
√
N), and proposals

for non-Gaussian data, such as Doane’s formula.74

Binning estimates of entropy measures, mostly the CE but also the implementa-

tion of the IS obtained using the estimates in Eq. (13) and Eq. (15) in the definition

of Eq. (9), have been extensively used to characterize the complexity of physiological

systems. Applications range from animal models to the study of human physiology,

analyzed through biomedical time series of heart rate variability, arterial pressure,

sympathetic nerve activity, respiration and others, recorded to infer the complexity

of homeostatic regulation in different physiological states and pathological condi-

tions.30,40,42,72,75 In some studies, binning estimates of physiological complexity

were compared to other approaches reviewed in this chapter, such as approximate

and sample entropy, nearest neighbor estimates, and parametric methods.40,41
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3.3. Dispersion Entropy

Dispersion Entropy (DispEn) is a recently proposed entropy metric based on the

application of Shannon entropy to sequences of symbols derived from the levels of

amplitude in the samples of x, exploring a different coarse-graining process to that

covered in Sec. 3.2. DispEn seeks to provide reliable entropy estimations for short

time signals and have a fast computational time.

The DispEn algorithm resembles that of PermEn in some of its steps (see

Sec. 3.9), but it considers the amplitude values in the time series after the conversion

of samples of x to different symbols by means of the application of a mapping func-

tion.27 DispEn was introduced in27 and, since then, the concept has been applied

in a variety of settings in biomedical signal analysis, including EEG,76,77 MEG,78

cardiac activity,79,80 and heart sounds,81 among others.

Formally, DispEn is computed as follows:

(1) The samples in x (seen as realisations of Xn) are mapped to c discrete classes,

which can be denoted with integers ranging from 1 to c. In this step, a number

of linear and, more commonly, nonlinear mapping functions can be considered.

In most cases, the mean and standard deviation of x are computed and the

samples in x are transformed using a sigmoid-like function. The transformed

values are assigned into c bins of equal size depending on their level of amplitude

after the transformation. This results in a temporal sequence of symbols vc =

{vc1, . . . , vcN}.34

(2) The coarse-grained sequence vc is used to create patterns in embedding dimen-

sion m, number of classes c, and time delay L, in a similar way to how PermEn

creates patterns of length m. That is, the dispersion patterns Vm,c
i (L) are

formed as:

Vm,c
i (L) = {vci , vci+L, . . . , v

c
i+L(m−1)}, i = 1, 2, . . . , N − L(m− 1). (16)

(3) For each of cm potential dispersion patterns φv0...vm
, its relative frequency of

appearance is obtained by counting the number of sequences with that pattern

and dividing it by the total number of patterns extracted from the signal. If

p(φv0...vm
) denotes the relative frequency of dispersion pattern φv0...vm , we have

p(φv0...vm) =
# of i, such that Vm,c

i has type φv0...vm
N − L(m− 1)

. (17)

(4) Finally, based on Shannon entropy definition, the DispEn value of x is calculated

as follows:

DispEn = − 1

log(cm)

cm∑
=1

p(φv0...vm
) · log p(φv0...vm), (18)

where the factor 1
log(cm) simply normalises the output to be in the range [0, 1].
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The maximum value of 1 is achieved when all possible dispersion patterns φv0...vm
have equal probability to appear. In contrast, when there is only one pattern across

the whole signal, DispEn becomes 0, thus indicating a completely regular time series.

It is also worth noting that the number of possible dispersion patterns assigned are

cm.34 Hence, combining a large number of classes with long pattern lengths may

lead to having to store extremely high numbers of distinct patterns φv0...vm .

Overall, the number of classes c must be chosen to balance the quantity of

entropy estimates with the loss of signal information. A small value of c enables us

to reduce the impact of noise on the entropy estimation. However, too low c values

may result in detailed information being lost in the coarse-graining process. Thus, a

trade-off between large and small c values is needed. To achieve reliable estimations,

it has been suggested that the number of potential dispersion patterns, cm should be

smaller than the length of the signal, N .27 In particular, we recommend cm � N .

Therefore, due to the exponential dependency, a rule of thumb for the selection of

c and m is c(m−1) < N .

It is worth noting that the mapping function used in the first step of the DispEn

algorithm to transform x into vc has a major impact on the results. The simplest

approach would imply sorting the original time series x and assigned the sorted

samples to classes in such a way that each class c has equal range of values. However,

this approach may have difficulties dealing with signals with abnormally large values

and/or spikes. The reason is that such linear mapping would tend to assign the

majority of the samples in x to too few classes when the maximum and/or minimum

values in the time series are much higher in absolute value than most other samples

in the signal. It is important to note as well that the use of a linear mapping

would result in the quantised series vc being equivalent to xq in Sec. 3.2. Hence,

nonlinear functions with sigmoid shapes are recommended and typically used when

dealing with real world data. This recommendation is further supported by the fact

that nonlinear mappings of the dynamical range of the x have demonstrated better

performance in the separation of different kinds of biomedical recordings.34 For a

comparison of common nonlinear mapping functions, the reader is referred to Ref.34

Variants of DispEn have already been proposed. Multiscale and multivariate

versions of DispEn have been introduced to assess patterns across several temporal

scales82 or components of a multivariate signal,64 respectively. Another variant

sought to modify the mapping process to make it robust to outliers and/or missing

data due to the fact that these artefacts can be relatively common in biomedical

recordings.83

The algorithm of DispEn has also been modified to propose fluctuation-based

DispEn (FDispEn), which disregards the absolute levels of amplitude in a time

series.34 In this variant, only the difference between adjacent elements of dispersion

patterns is considered. The patterns computed in this way are called ’frequency-

based dispersion patterns’, which have length m − 1 and elements ranging from

−c+ 1 to +c− 1. The rest of the algorithm is applied like in the original definition
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of DispEn, with the difference that we now have (2c − 1)m−1 potential frequency-

based dispersion patterns.34 Preliminary research on a number of synthetic and

real-world datasets related to neurological diseases suggest that FDispEn, and its

multiscale version, mFDispEn, may even be superior to multiscale SampEn and

multiscale DispEn in the detection of different states in the signals.84

3.4. Approximate and sample entropy

One of the first methods proposed to calculate CE (entropy rate) from finite time

series was the approximate entropy (ApEn).28 Inspired in an approximation for

the KS entropy introduced by Eckmann and Ruelle (ER),85 Pincus proposed to fix

the two parameters taken as limits in the ER formulation (m and r) and estimate

ApEn as a statistics for any finite-length signals. ApEn is defined as follows.

Consider the signal x and all of its possible vectors xm
i (1 ≤ i ≤ N −m + 1)

defined in Sec. 3.1. Define Cm
i (r) as the probability of finding any vector in x

whose distance (Eq. (12)) to the template vector xm
i is lower than or equal to r. In

mathematical terms, Cm
i can be defined as:

Cm
i (r) =

# of xm
j such that d[xm

i ,x
m
j ] ≤ r

N −m+ 1
, (1 ≤ j ≤ N −m+ 1). (19)

When the distance between the template vector and another vector in x is

lower than or equal to the tolerance factor, i.e. d[xm
i ,x

m
j ] ≤ r, the two vectors

are considered similar (vector match). The number of matches for the template

vector xm
i is divided by the number of possible vectors of length m, so that Cm

i (r)

estimates, within the tolerance r, the probability of finding vectors similar to xm
i

in x; such probability corresponds to the probability of the history Xm
n of the

investigated process estimated at the data point xm
i using the Heaviside (step)

kernel with parameter r.16 Now, define

Φm(r) =
1

(N −m+ 1)

N−m+1∑
i=1

lnCm
i (r), (20)

as the average logarithmic probability of finding any match in x, considering all

possible vectors of length m. Equation (20) is a negative estimate of the dynamic

entropy in the first part of Eq. (7), i.e. Φm(r) ≈ −H(Xm
n ). Finally, the ApEn of x

(length N), for specific choices of m and r, is defined as:

ApEn(m, r,N) = Φm(r)− Φm+1(r). (21)

Note that, similarly to Φm(r), the term Φm+1(r) is a negative estimate of the

dynamic entropy in the second part of Eq. (7), i.e. Φm+1(r) ≈ −H(Xn,X
m
n ). This

makes clear that the ApEn defined in Eq. (21) is a kernel estimate of the CE defined

in Eq. (8), i.e. ApEn(m, r,N) ≈ −H(Xm
n ) +H(Xn,X

m
n ) = H(Xn|Xm

n ).

In the definition proposed by ER, CE is obtained in the limits m → ∞, r → 0

and N → ∞. However, Pincus proposed that its estimation for specific choices of
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m, r and N could be of great interest as a measure of regularity.28 Therefore, ApEn

is an estimator of CE for real (and usually noisy) signals and can be interpreted as

the (logarithm) probability that vectors that are similar for m points will remain

similar when an additional point is considered (m+1). For example, if all the similar

m-length vectors remain similar when the vectors size are increased to m + 1, it

means that the signal tends to be very repetitive. If one knows the previous m

values of any sequence, the (m + 1)-th value can be fully predicted. In this case,

the new information carried by the current value (m + 1) is zero and ApEn will

also be zero. On the other hand, when none of the similar m-length vectors remain

similar when the vectors size are increased to m+ 1, it means that the previous m

points are not useful at all to predict the (m+ 1)-th value of the sequence. In this

situation, the information carried by the current value (m+ 1) is maximum, and so

is ApEn.

Although the introduction of ApEn was a hallmark, it quickly became ap-

parent that ApEn is biased. ApEn intentionally does not discard self-matches

in the comparison of vectors to avoid the occurrence of zeros in Eq. (19), which

would lead to undefined entropy. However, this is at the expense of resulting in

a biased estimation of the conditional probabilities, so that ApEn assigns more

similarity among patterns than is really present.2 As a consequence, ApEn is

strongly dependent on the signal size (N) and does not show relative consis-

tence, i.e. if ApEn(m1, r1)(x) ≤ ApEn(m1, r1)(y), there is no guarantee that

ApEn(m2, r2)(x) ≤ ApEn(m2, r2)(y).

To overcome the limitations of ApEn, Richman and Moorman introduced the

sample entropy (SampEn).29 Essentially, SampEn has the same purpose as ApEn,

but the algorithm utilized to calculate SampEn does not require the inclusion of self-

matches when estimating the probability of occurrence of vectors. This was possible

by changing the way the conditional probabilities are estimated. In ApEn, it is a

template-wise procedure, so that the logarithm of the conditional probability of each

template vector is calculated and averaged. In SampEn, however, the conditional

probability is estimated from all template vectors, so that the logarithm is only

taken after the calculation of the overall conditional probability. This drastically

reduces the chance of resulting in undefined entropy.

The algorithm of SampEn was inspired in the work from Grassberger and Pro-

caccia86 and can be defined as follows. Consider the same signal (x) and all of its

possible vectors xm
i (1 ≤ i ≤ N −m+ 1) defined previously. Let

Um
i (r) =

# of xm
j such that d[xm

i ,x
m
j ] ≤ r

N −m− 1
, (1 ≤ j ≤ N −m, j 6= i) (22)

and

Um+1
i (r) =

# of xm+1
j such that d[xm+1

i ,xm+1
j ] ≤ r

N −m− 1
, (1 ≤ j ≤ N−m, j 6= i) (23)

be the probability of finding any vector similar to xm
i and xm+1

i , respectively, in

signal x. The constraints j 6= i in Eq. (22) and Eq. (23) assure that self-matches
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are not accounted. Also, the range of j is the same in both equations, assuring that

the space of vectors evaluated for m and m+ 1 is the same.

Now, the probability of finding any vector match for sequences of size m can be

obtained by averaging the probabilities for each template vector xm
i , 1 ≤ i ≤ N−m.

The same procedure can be performed for vectors of size m+ 1, resulting in

Um(r) =
1

N −m

N−m∑
i=1

Um
i (r) (24)

and

Um+1(r) =
1

N −m

N−m∑
i=1

Um+1
i (r). (25)

Finally, the SampEn of x (length N), for specific choices of m and r, is defined

as:

SampEn(m, r,N) = − ln
Um+1(r)

Um(r)
. (26)

Considering that the space of vectors utilized to estimate Um+1(r) and Um(r)

is the same, the ratio Um+1(r)/Um(r) in Eq. (26) can be simplified and SampEn

could be defined simply as:

SampEn(m, r,N) = − ln
A

B
, (27)

where A and B are the total number of matches for all template vectors of size

m+ 1 and m, respectively.

As the number of vector matches (A and B) or the vector occurrence proba-

bilities (Um(r) and Um+1(r)) are averaged over all template vectors, it is straight-

forward to see that any match, found for any template vector of size m + 1, is

sufficient to assure that SampEn will return a valid entropy value. In case of ApEn,

it must be satisfied for all template vectors individually, otherwise ApEn will not

be defined. Moreover, as SampEn does not account for self-matches, the bias pre-

sented by ApEn were considerably improved29 and SampEn should be preferable

over ApEn whenever possible.

The extension of SampEn to a multiscale method was proposed by Costa et al.,

which became widely known as multiscale entropy (MSE).8,87 MSE calculates Sam-

pEn for several scaled versions of the original signal and the variations of SampEn

as a function of the scale factor has been used to represent the signal complexity

in many biomedical problems.88–91 Several variants of MSE were proposed in the

following years.92
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3.5. Fuzzy entropy approaches

In ApEn and SampEn algorithms, the similarity definition of vectors is based on the

Heaviside function, a hard and sensitive boundary function. This leads to entropy

measures that are sensitive to the parameter values and may be invalid in case of

small parameter values:93,94 the value of the entropy measure is discontinuous and

it can show large variations with a slight change of the tolerance r. This is due

to the two states of the Heaviside function (0 and 1). It has been reported that

fuzzy entropy approaches are more accurate irregularity measures than ApEn and

SampEn: they show more consistency and less dependence on data length, achieve

continuity, and are more robust to noise.93

Given the time series x = {x1, . . . , xN}, the algorithm to compute the fuzzy

sample entropy is the following:93,95,96

(1) for an embedding dimension m, construct (N − m + 1) vectors smi =

{xi, xi+1, ..., xi+m−1} − xmi , 1 ≤ i ≤ N − m + 1, where xmi is the baseline

and is computed as

xmi =
1

m

m−1∑
j=0

xi+j . (28)

Notice that vectors smi are similar to the vectors xm
i defined in Sec. 3.1, with

the difference that smi removes the vector mean baseline.

(2) for a given smi , calculate its similarity with the neighboring vector smj . This is

performed through the similarity degree Dm
ij (n, r) defined by a fuzzy function

Dm
ij (n, r) = µL(dmij , n, r), (29)

where µL is the fuzzy function defined as

µL(dmij , n, r) = exp

(
−

(dmij )n

r

)
, (30)

and dmij is the Chebyshev distance [Eq. (12)] between smi and smj , i.e.:

dmij = d[smi , s
m
j ], (31)

dmij = max
0≤k≤m−1

|xi+k − xmi − (xj+k − xmj )|. (32)

(3) determine Bm(n, r) as

Bm
i (n, r) =

1

N −m− 1

N−m∑
j=1,j 6=i

Dm
ij (n, r), (33)

and

Bm(n, r) =
1

N −m

N−m∑
i=1

Bm
i (n, r). (34)
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(4) in the same way, compute

Am
i (n, r) =

1

N −m− 1

N−m∑
j=1,j 6=i

Dm+1
ij (n, r), (35)

and

Am(n, r) =
1

N −m

N−m∑
i=1

Am
i (n, r). (36)

(5) compute the fuzzy sample entropy as

FuzzyEn(m,n, r) = lim
N→∞

[lnBm(n, r)− lnAm(n, r)], (37)

which gives, for finite datasets

FuzzyEn(m,n, r,N) = lnBm(n, r)− lnAm(n, r). (38)

Similarly to ApEn and SampEn, the FuzzyEn is a kernel estimate of the CE defined

in Eq. (8), computed from a realization of length N of the underlying process

assumed as a Markov process of order m; the difference between FuzzyEn and

ApEn/SampEn stands in the use of a smooth kernel function in place of the step

function realized by the Heaviside kernel.

For the choice of the fuzzy function, µL, several functions can be chosen, each

with drawbacks and advantages, as described in Ref.43 The fuzzy function should

have the following properties: (1) being continuous so that the similarity does not

change abruptly; (2) being convex so that self-similarity is the maximum.93

Using this fuzzy approach, and the nonlinear Sigmoid as the fuzzy function

(µL), Xie et al. reported that FuzzyEn outperforms the standard SampEn measure

in terms of relative consistency, freedom of parameter selection, robustness to noise

and independence on the data length.95

Later on, Liu et al. proposed the fuzzy measure entropy (FuzzyMEn).97 Fuzzy-

MEn employs both the fuzzy local and the fuzzy global measure entropies to reflect

the local and global characteristics of the time series. FuzzyMEn therefore reflects

the entire complexity in the time series (global and local similarity degree).97 This

is not the case with the standard fuzzy entropy measure that only focuses on the

local waveform characteristics of the signals by removing the local baselines with-

out considering any global signal characteristics. The algorithm for FuzzyMEn, for

given values m,nL, nG, rL, rG is

(1) compute smi as mentioned above, but also vectors gm
i = {xi, xi+1, ..., xi+m−1}−

xmean, 1 ≤ i ≤ N −m+ 1, where xmean is the mean value of the time series x.



October 6, 2020 7:36 ws-rv961x669 Book Title output page 22

22

(2) calculate the similarity as defined in Eqs. (29) to (32), but compute also

DGm
ij (nG, rG) = µG(dGm

ij , nG, rG), (39)

where µG is the fuzzy function

µG(dGm
ij , nG, rG) = exp

(
−

(dGm
ij )nG

rG

)
, (40)

and dGm
ij is the Chebyshev distance between gm

i and gm
j , i.e.:

dGm
ij = d[gm

i ,g
m
j ], (41)

dGm
ij = max

0≤k≤m−1
|xi+k − xmean − (xj+k − xmean)|. (42)

(3) determine Bm(nL, rL) (Eq. (34)) and BGm(nG, rG), using for BGm(nG, rG):

BGm
i (nG, rG) =

1

N −m− 1

N−m∑
j=1,j 6=i

DGm
ij (nG, rG), (43)

BGm(nG, rG) =
1

N −m

N−m∑
i=1

BGm
i (nG, rG). (44)

(4) in the same way, compute Am(nL, rL) [Eq. (36)] and AGm(nG, rG), using for

AGm(nG, rG):

AGm
i (nG, rG) =

1

N −m− 1

N−m∑
j=1,j 6=i

DGm+1
ij (nG, rG), (45)

and

AGm(nG, rG) =
1

N −m

N−m∑
i=1

AGm
i (nG, rG). (46)

(5) compute FuzzyEn [Eq. (38)] and FuzzyGEn using for FuzzyGEn:

FuzzyGEn(m,nG, rG) = lim
N→∞

[lnBGm(nG, rG)− lnAGm(nG, rG)], (47)

which gives, for finite datasets

FuzzyGEn(m,nG, rG, N) = lnBGm(nG, rG)− lnAGm(nG, rG). (48)

(6) finally compute FuzzyMEn as:

FuzzyMEn(m,nG, rG, nL, rL, N) = FuzzyEn(m,nL, rL, N)+

FuzzyGEn(m,nG, rG, N). (49)
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Liu et al. reported that FuzzyMEn has better discrimination ability than the

above-mentioned fuzzy entropy approach.97 More recently, a refined fuzzy entropy

measure was also developed.98 It consists in substituting a piecewise fuzzy mem-

bership function for the Gaussian function in conventional fuzzy entropy measure.

Ji et al. reported that this refined fuzzy entropy measure outperforms conventional

SampEn and FuzzyEn in terms of stability and robustness against additive noise.

This was particularly true when the data set was relatively short.98

For some of the fuzzy functions, more parameters have to be set (e.g., n in

the family of exponential function exp(−(dij/r)
n)).97 This can be an additional

drawback compared to more standard entropy measures.

More recently, other fuzzy entropy-based measures have been proposed, as de-

scribed in Refs.99–102 Recent modified multiscale approaches have also been pub-

lished.103–106

3.6. Nearest neighbors metrics

The class of estimators of entropy measures which makes use of nearest neighbor

metrics exploits the intuitive notion that the local probability density around a

given data point is inversely related to the distance between the point and its near-

est neighbors: the larger the distance between an observation w of a variable W

and its k−nearest neighbor, the lower the local density p(w). This concept has been

formalized first in the seminal work of Kozachenko and Leonenko (KL),107 who stud-

ied the statistics of the distances between neighboring points in multidimensional

spaces to provide an estimator of the differential entropy of a vector random variable

defined as in Eq. (5). The difference with the kernel-based estimators seen in the

previous subsections (i.e., approximate and sample entropy, fuzzy entropy) is in the

fact that, instead of fixing the neighborhood size for the reference point according to

a given threshold distance, the KL nearest neighbor estimator fixes the number of

neighbors of the reference point and quantifies the neighborhood size by computing

the distance between the reference point and its kth nearest neighbor. Accordingly,

the KL estimator can be thought of as “variable-width” kernel-estimator, as the

variability of distances with the local density of points allows to adjust dynamically

the “resolution” of the estimates. Crucially, there are consistency proofs108,109 for

nearest neighbor entropy estimators, meaning that these methods converge to the

true values in the limit of infinite data size.

The KL estimator illustrates that to estimate an information measure it is not

necessary to explicitly estimate the probability distribution from the available data

and then plug such distribution in the functional expressing the measure. In fact,

given a d-dimensional continuous random variable W , the KL estimator computes

the differential entropy H(W ) = −E[log p(w)] as the sample average of estimates

of the information content, h(w) = − log p(w), obtained at the data points wn, n =
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1, . . . , N ′ (where N ′ is the number of observations available for W ):

Ĥ(W ) =
1

N ′

N ′∑
n=1

ĥ(wn). (50)

Then, denoting as εn,k twice the distance between the reference point wn and its

kth nearest neighbor and as pn the probability mass of the ε-ball surrounding wn,

under the assumption that the unknown probability density p(w) is constant within

the ε-ball we have pn = k
N ′−1 = cd,Lε

d
n,kp(w), where cd,L is the volume of the d-

dimensional unit ball under a given norm L (cd,L = 1 for the maximum norm, i.e.,

taking the maximum distance of the scalar components). Exploiting this relation,

the estimator in Eq. (50) becomes:

Ĥ(W ) = − 1

N ′

N ′∑
n=1

log
k

(N ′ − 1)cd,Lεdn,k
. (51)

Finally, adding the bias-correction term log k − ψ(k), where ψ(x) = log(Γ(x))
dx is

the digamma function and Γ(x) the gamma function, we obtain the KL entropy

estimator:107

ĤKL(W ) = −ψ(k) + log(N ′ − 1) + log cd,L +
d

N ′

N ′∑
n=1

log εn,k. (52)

The KL estimator makes use of only one free parameter, i.e., the number of

nearest neighbors k, which allows for a certain control of the bias versus variance

balance (larger k reduce statistical errors at the expense of a higher bias) even for

finite samples. Such estimator possesses several properties, including its asymptotic

absence of bias and consistency,107–109 high data-efficiency110 and the possibility to

exploit the many algorithms for neighbor search to perform the estimation,111 that

make it particularly attractive for practical applications. In the computation of

information measures for signal analysis, the estimator in Eq. (52) is applied in a

straightforward way to compute, from a time series x = {x1, . . . , xN}, estimates of

the static entropy of the underlying process X as defined in Eq. (6):

Ê(X) = ĤKL(Xn) = −ψ(k) + log(N − 1) + log c1,L +
1

N

N∑
n=1

log εn,k, (53)

or, after approximating the past history of the process with m time-lagged variables

(X−n ≈ Xm
n = [Xn−1 · · ·Xn−m]), estimates of the dynamic entropy of the present

and past of the process as defined in Eq. (7):

ĤKL(Xn,X
m
n ) = −ψ(k)+log(N−m−1)+log cm+1,L +

m+ 1

N −m

N−m∑
n=1

log εn,k; (54)

note that, for a fixed number of neighbors k and embedding dimension m, the only

quantity that needs to be computed to estimate these entropies is the distance from



October 6, 2020 7:36 ws-rv961x669 Book Title output page 25

Entropy Analysis of Univariate Biomedical Signals 25

the nth data point (xn in Eq. (53) and [xnxn−1 · · ·xn−m] in Eq. (54)) to its kth

nearest neighbor (denoted as εn,k in both cases).

Then, for information measures defined as the sum of two or more entropy

terms such as the CE and the IS in Eq. (8) and Eq. (9), a naive estimator for such

functionals would consist of summing the individual differential entropy estimators.

However, this may not be adequate in practical applications, since the variables

involved in the computation of CE or mutual information terms are of different

dimension (respectively, 1, m and m + 1), and the bias of the KL entropy esti-

mator varies with the dimension. The practical issue is that the naive application

of the same neighbor search procedure in all spaces would result in different dis-

tance lengths when approximating the probability density in different dimensions,

and this would introduce different estimation biases that cannot be compensated

by taking the entropy differences. A solution to this problem was proposed by

Kraskov, Stogbauer and Grassberger,112 who provided an approach to adapt the

KL estimator to mutual information estimation. The resulting estimator, denoted

as KSG estimator, came from the insight that Eq. (52) holds for any number of

neighbors k, and therefore can be iterated varying k and keeping fixed the distance

εn,k. Thus, to estimate a MI measure, or more generally any information measure

that can be decomposed in terms of differential entropies, a neighbor search can

be performed in the highest-dimensional space to find the distance between any

reference point and its kth neighbor, and then this distance can be used in a lower

dimensional space as the range inside which the neighbors are counted. This allows

to use the same range of distances in the estimation of the different entropy terms,

thus achieving bias compensation. In our context, to estimate the CE and the IS

defined in Eq. (8) and Eq. (9), we compute first the joint entropy Ĥ(Xn,X
m
n ) as in

Eq. (54), where εn,k is twice the distance from (xn,x
m
n ) to its kth nearest neighbor,

and then, given the distances εn,k, the entropies in the lower-dimensional spaces are

estimated through a range search:

Ĥ(Xm
n ) = log(N −m− 1) + log cm+1,L +

1

N −m

N−m∑
n=1

(m log εn,k − ψ(Nxm
n

)),

Ĥ(Xn) = log(N −m− 1) + log cm+1,L +
1

N −m

N−m∑
n=1

(log εn,k − ψ(Nxn
)),

(55)

where Nxn
and Nxm

n
are the number of points whose distance from xn and xm

n ,

respectively, is smaller than εn,k/2. Then, the KSG estimates of CE and IS are

obtained applying Eq. (54) and Eq. (55) to the definitions CE(X) = H(Xn,X
m
n )−

H(Xm
n ) and IS(X) = −H(Xn,X

m
n ) +H(Xm

n ) +H(Xn), yielding:

CEKSG(X) = −ψ(k) +
1

N −m

N−m∑
n=1

(log εn,k + ψ(Nxm
n

)), (56)
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ISKSG(X) = ψ(k)+log(N−m−1)+log cm+1,L−
1

N −m

N−m∑
n=1

(ψ(Nxn)+ψ(Nxm
n

)).

(57)

Note that, in both the estimation of CE and IS, many of the terms in each en-

tropy estimate cancel out when are summed, so that each entropy is only implicitly

estimated.

The peculiarities of the nearest neighbor technique described above, i.e., its

adaptive resolution obtained through changing the distance scale110 and the bias

compensation implemented through distance projection,112 allow the method to

work with short data sets even when working in relatively high-dimensional spaces

as those naturally considered after the embedding of raw signals. These properties

have made the approach eligible especially for the computation of entropy measures

for multivariate time series where the issue of dimensionality is more serious.113–115

Nevertheless, the properties of course hold also in the univariate case, and indeed

the approach has gained popularity also when implemented for the computation

of entropy measures for individual biomedical time series, as documented by the

recent applications in neuroscience116 and cardiovascular control.16,41,117,118

3.7. Parametric methods

The parametric methods to estimate information-theoretic quantities make the as-

sumption that the probability distributions involved into the computation of the

desired entropy measures belong to a certain family, and start by first inferring the

parameters of the family that best fit the observed data samples. Afterwards, the

estimated parameters are plugged into the functional that relates the probability

distribution to the entropy measure, thus providing an estimate of the latter. For

some families of continuous probability densities, the parametric approach provides

an analytical insight on the dependence of the desired information-theoretic func-

tional on the parameters. The most common case, which will be treated in this

section, is the multivariate Gaussian distribution, for which entropies can be com-

puted analytically from parameters related to the covariance structure of the under-

lying variables.119 This case is of particular relevance thanks to the fact that many

real-world data tend to the Gaussian distribution, and also because of the close

link existing between linear parametric models and Gaussian distributions.119,120

Extensions to other distributions are given in the work of Hlavackova et al.,121 who

provided the derivation of differential entropy for several parametric probability

functions including the generalized normal, log-normal and Weinman densities.

The linear Gaussian estimator starts from the well-known joint probability den-

sity of the generic d-dimensional variable W belonging to the Gaussian family:

p(w) =
1√

2πd|ΣW |
e−

1
2 (w−µW )Σ

−1
W (w−µW )T , (58)

where µW = E[W ] and ΣW = E[(W −µW )T (W −µW )] are the mean vector and

the covariance matrix of W . Then, the joint entropy of W can be computed by
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using Eq. (58) in Eq. (1):53

H(W ) =
1

2
ln((2πe)d|ΣW |); (59)

when a scalar variable V is considered, Eq. (59) reduces to H(V ) = 1
2 ln(2πeσ2

V ),

where σ2
V is the variance of V , which shows how the entropy of a Gaussian variable

is a function of its variance only. Moreover, the use of Eq. (59) in the two terms

appearing in the right hand side of Eq. (2) allows to express the CE of V given W

as:

H(V |W ) =
1

2
ln(2πeσ2

V |W ), (60)

where σ2
V |W = |ΣV W |

|ΣW | is the so-called partial variance of V given W (ΣVW is the

covariance matrix of the joint variable [V,W ]). Additionally, the reported formula-

tions can be exploited to draw a parallel between information measures computed

for Gaussian variables and linear prediction. In fact, considering a multivariate lin-

ear regression of V on W represented as V = AW +B+U , where A and B are the

d-dimensional vector of the regression coefficients and the scalar intercept, and U

is a zero-mean random variable modeling the prediction error, it can be shown that

the partial variance of V given W is equivalent to the prediction error variance, i.e.

σ2
V |W = σ2

U .120

The above derivations can be exploited in a straightforward way to estimate en-

tropy measures in univariate signal analysis. Assuming that the observed stochastic

process X is a Gaussian Markov process of order m, the roles of the generic vari-

ables V and W are taken by the present state of the process, Xn, and by its past

states truncated to lag m, Xm
n = [Xn−1 . . . Xn−m]. Then, assuming stationarity

of the process, sample estimates of the process variance, σ̂2
X = σ̂2

Xn
, and of the

covariance matrix of present and past states, Σ̂XnXm
n

, can be easily obtained from

the time series x = {x1, . . . , xN} measured as a realization of X. Moreover, the

linear regression model Xn = AXm
n + B + Un can be identified via ordinary least

squares methods to obtain estimates of the regression parameters and of the predic-

tion error variance σ̂2
U .122 From these parameter estimates, plug-in estimates of the

static entropy of the process, of the dynamic entropy of present and past states, of

the CE of the present given the past, and of the IS measured as MI between present

and past states are finally obtained as:

EG(X) = Ĥ(Xn) =
1

2
ln(2πeσ̂2

X), (61)

Ĥ(Xn,X
m
n ) =

1

2
ln((2πe)m+1|Σ̂XnXm

n
|), (62)

CEG(X) = Ĥ(Xn|Xm
n ) =

1

2
ln(2πeσ̂2

U ), (63)

ISG(X) = Î(Xn; Xm
n ) =

1

2
ln
σ̂2
X

σ̂2
U

; (64)
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in the above expressions, the subscript G stands for the use of the linear Gaussian

approximation to compute the relevant entropy measures. In particular, Eq. (63)

provides the linear estimate of the complexity of a time series (LinCE).

The main advantage of the methods leading to the computation of entropy mea-

sures as in Eqs. (61-64) is the high data-efficiency guaranteed by the parametric

representation, which allows indeed accurate estimation of the information measures

based on the parameter estimates. As regards the linear parametric description

formulated here, the existence of well-established parameter estimation methods

for the identification of time series regression models123 assures accurate and ef-

ficient computation of the parameters and consequently of the entropy measures.

Note that, while the formulation presented here holds exactly only for Gaussian

processes for which the linear representation captures the whole the entropy varia-

tions in the analyzed system, extensions to non-linear representations are possible

exploiting non-Gaussian parametric distributions.121 On the other hand, the suc-

cess of parametric estimators depends on the correctness of the assumptions made

about the family of probability densities described by the estimated parameters: if

the empirical distribution of the observed data deviates strongly from the assumed

distribution, heavy misinterpretations may be expected in the inference of system

properties from the estimated entropy measures. Nevertheless, the assumption of

joint Gaussian distribution for the analyzed processes is reasonably met in several

applicative contexts also in the analysis of biomedical signals. This is documented

by the fact that the corresponding parametric representation leading to the mea-

sures presented here has been widely used to characterize the patterns of complexity

and regularity of biomedical time series, particularly in the context of cardiovascu-

lar and cardiorespiratory dynamics.16,41,118,124,125 Moreover, CE measures derived

from linear models have been proposed as a model-based alternative of SampEn as

the basis for multiscale entropy analysis, allowing the computation of complexity

across multiple time scales in a data-efficient way.126–128

3.8. Distribution entropy

Distribution entropy (DistEn) has been proposed to improve the robustness of com-

plexity assessment for short-term time series.33 In the DistEn algorithm, the distri-

bution of vector-to-vector distances in the state-space is used as an interpretation

of the spatial structures, and is supposed to increase with complexity.

The algorithm to compute DistEn of x is the following33

(1) construct the vectors xm
i as defined in Sec. 3.1.

(2) define the distance matrix Dm = {dmi,j} among all vectors xm
i and xm

j as the

Chebyshev distance between xm
i and xm

j . Note that Dm is symmetrical.

(3) estimate the empirical probability density function (ePDF) of Dm with the

histogram (binning) approach. As described in Sec. 3.2, the binning procedure

involves the quantization of Dm values into Q levels, yielding the quantized



October 6, 2020 7:36 ws-rv961x669 Book Title output page 29

Entropy Analysis of Univariate Biomedical Signals 29

sequence Dm
q , q = 1, . . . , Q. Then, the probability of occurrence of the ith bin

is estimated by the frequency of occurrence of each bin, i.e. p(i) = Pr{Dm
q = i}.

To reduce the bias, elements with i = j are excluded when estimating ePDF.

(4) finally, compute DistEn expressed in bits with the formulation provided in

Eq. (13):

DistEn(m,Q) = −
Q∑
i=1

p(i) log2 p(i), (65)

where p(i) log2 p(i) = 0 when p(i) = 0. DistEn varies between 0 and

log2(Q) (one peak and flat ePDF, respectively). A normalized DistEn value

can be computed as:

DistEn(m) = − 1

log2(Q)

Q∑
i=1

p(i) log2 p(i). (66)

In the latter case, DistEn varies between 0 and 1. Here again, p(i) log2 p(i) = 0

when p(i) = 0.

When applied to synthetic signals, DistEn has shown to have lower sensitivity

on parameters (more consistency than SampEn and than a fuzzy approach) and

more stability for short signals.33 Moreover, it has been reported that the stability,

consistency, and classification performance is not much influenced by changes in

m values.129 Even for a data length of 50 samples, DistEn has proved to give

acceptable results.33 Furthermore, DistEn does not depend on the variance of the

signal and does not change after an amplitude-rescaling procedure.33 On short-

term RR interval time series, it has been shown that DistEn overperforms SampEn

and a fuzzy approach.33,130,131 However, it should be noted that DistEn is difficult

to compare straightly to ApEn/SampEn and to the other CE measures reviewed

in this chapter, because it explores a different concept of complexity: while CE

measures quantify an entropy rate intended as the information contained in the

present state of the system but not in its past m states, DistEn quantifies the

entropy of the embedding vectors intended as the information contained in the

dissimilarities among observations of m system states.

As mentioned by Li et al.,33 the influence of sampling frequency should now be

studied thoroughly. As Dm is symmetrical, the estimation of ePDF can be per-

formed by using only the upper or lower triangular matrix. This property can be

used to reduce the time of calculation. However, computation time has to be ana-

lyzed more deeply and compared with other complexity measures. The distribution

entropy measure to assess the complexity of complex-valued signal has also been

proposed.132 Some authors have suggested the elimination of vector distances apart

more than 10 samples in Dm. This procedure drastically reduces the computational

cost of the calculation, with acceptable lost of precision in the estimations of the
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entropy value.133 Recently, by using the concepts of DistEn and FuzzyEn, modified

versions of DistEn have been proposed for the detection of epileptic seizures134,135

or for rolling bearing.136 Furthermore, the permuted DistEn has recently been pro-

posed to detect the changes of irregularity caused by the fluctuation of the complex

time series.137 Moreover, a joint DistEn has also been published.138 Based on Dis-

tEn, Wang and Shang recently proposed the cumulative residual DistEn to study

complexity of time series and the cumulative residual DistEn model extended to

the fractional order.139 The multiscale Rényi DistEn has also been proposed and

applied to study financial time series.140 Other investigations in this way deserve

future attention.

3.9. Original and modified permutation entropy

Permutation entropy (PermEn) is based on the comparison of neighboring values32

within patterns in a time series. PermEn has the advantage of being very simple

and is very fast in terms of computation time. For the time series x = {x1, . . . , xN}
the algorithm to compute PermEn is the following:32

(1) compute the vectors xm
i (L) defined in Sec. 3.1.

(2) the elements of these vectors are associated with numbers from 1 to m and then

arranged in an increasing order. There are m! possible patterns π (also called

permutations) for an m-tuple vector.

(3) let f(π) be the frequency of the permutation π and let p(π) be its relative

frequency. The permutation entropy is computed as

PermEn(m,L) = −
m!∑
i=1

p(π) ln p(π). (67)

According to this algorithm, PermEn is an estimate of the dynamic entropy defined

in Eq. (7) when the dynamics are represented using ordinal patterns encompassing

m system states; an extension to measuring the CE as the difference between the

entropies of ordinal patterns of length m+1 and m has been proposed recently.41,141

In either case, it is important to stress that the permutation patterns are different

from the patterns created with the other approaches presented in this chapter. In-

stead of defining patterns according to the magnitude of each sample, permutation

patterns account only for the rank of samples within the patterns. Thus, the mag-

nitude of changes is not taken into account, only the ordering of the values. While

using ranks simplifies the dynamics favoring entropy computation for short data se-

quences and helps in dealing with nonstationarity effects, this is also the drawback

of PermEn: no information besides the order structure is used when extracting the

ordinal patterns for the time series.142

For practical purposes, Bandt and Pompe suggested to work with 3 ≤ m ≤ 7.32

Myers and Khasawneh proposed a way to automatically choose the parameters m
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and L.143 Wang et al. proposed a parameter optimization strategy for multiscale

PermEn (selection of the embedding dimension and time delay).144

Variants for PermEn have been introduced. Some of them rely on the mea-

sure itself (as detailed below) while others have proposed to modify the multiscale

step (see Refs.145–154). Some measures have been applied to biomedical time series,

while others have not yet but could lead to interesting results for such data. We

mention, below, the main variants of PermEn that have been proposed by now.

Fadlallah et al. proposed the weighted-permutation entropy to overcome the lim-

itation of permutation that disregards the information contained in the amplitude

values.155 The method assigns weights for each extracted vector when computing

the relative frequencies associated with every motif. However, this method is only

dependent on the variance (the variance or energy of each neighbor vector is used

to compute the weights), and its importance in the metric is always kept constant.

Other authors proposed the use of weights to compute the weighted multiscale

permutation entropy.156,157

In 2016, Azami and Escudero proposed the amplitude-aware permutation en-

tropy.158 This measure is sensitive to the changes in the amplitude of the signal,

in addition to its frequency. Moreover, this new measure deals with samples that

have equal amplitude values. Other studies focused on the drawback of possible

ambiguities due to equal values in time series for PermEn.142,159–163

For the biomedical field, Bandt proposed – in 2017 – a new version of PermEn

that he interpreted as distance to white noise.164 In the latter work, distance

to white noise was used as a parameter to measure depth of sleep.164 This new

permutation entropy version is supported by a statistical model which allows to

compute significance, and shows how the parameters can be optimized.164 For the

biomedical field too (to identify typical ECG RR interval series, among others),

some authors proposed the permutation ratio entropy.165,166

Zhang et al. proposed permutation entropy based on Hill’s diversity number to

study financial time series.167 For the financial markets, the fractional order gen-

eralization of information entropy has been used and led to the weighted fractional

permutation entropy and fractional sample entropy.168 Weighted permutation en-

tropy based on different symbolic approaches was also proposed to study financial

time series.169

In 2018, Chen et al. modified the permutation entropy and weighted permuta-

tion entropy definitions replacing the Shannon entropy by the Rényi entropy.170 In

the same way, Cánovas et al. studied several entropy functions in the permutation

entropy algorithm to assess what entropy measure is the best to reveal structural

changes in time series.171 Bai et al. proposed a combination of permutation and

Lempel-Ziv complexity to analyze electroencephalogram data.172 Liu et al. pro-

posed the multifractal weighted permutation entropy analysis using the estimation

of Rényi entropy of the system.173

In 2018 also, Tao et al. proposed the construction of a visualization scheme for
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permutation entropy from a non-uniform time series embedding.174 This scheme

matches permutation entropy with the topological characteristics of the signal under

study that are the optimal embedding dimension and set of time delays. Tylová

et al. proposed the use of a hash table as a special data structure to calculate

permutation entropy for window lengths up to 30.175

In 2019, Chen et al. proposed the improved permutation entropy that, as above,

takes into account the amplitude information of the time series and assigns the same

symbol to equalities.176 The authors mention that, compared with permutation en-

tropy, weighted permutation entropy, and amplitude-aware permutation entropy,

their improved permutation entropy shows better performance when processing sig-

nals with numerous repeated values and can better characterize signals with diverse

predictability.176 Moreover, it gives higher recognition rate for classifying ships

under noisy conditions.176

Li and Shang proposed, in 2019 also, the multiscale Tsallis permutation entropy

to better assess the hidden temporal correlations in signals.177

During the same year, Watt and Politi revisited the definition of permutation

entropy by introducing a second window-length to allow controlling the partition

size.178 This second window implicitly defines the resolution of the underlying par-

tition. The authors mention that this modification in the definition of permutation

entropy increases the flexibility of ordinal-pattern analysis of generic time-series.178

Yan et al. proposed the network permutation entropy where the connections

between different vectors are introduced and the network of the time series is built

using the Bandt-Pompe patterns and their weights.179 Gao et al. proposed the

multiscale permutation transfer entropy to analyze the coupling properties between

the motor and sensory areas during a three-level hand grip task.180

In 2020, in the framework of the permutation analysis, Zhao et al. proposed the

permutation transition entropy to measure the dynamical complexity of signals.181

Zhang et al. proposed the fuzzy permutation entropy which combines multiscale

entropy, permutation entropy, and fuzzy entropy.182

4. Role of dimension, data length and parameters

Dependencies between some nonlinear metrics are expected due to their shared

foundations. For example, it is reasonable to assume that the results of ApEn,

SampEn, and FuzzyEn, when applied to the same dataset, will be correlated .

Likewise, the results of PermEn and its variants should be consistent when applied

to the same signals.

4.1. Dependencies and relationships

In particular, some methods share parameters between them. Consider the embed-

ding dimension (m): the length of the pattern (vector) which indicates how many

samples are included in each vector. Most entropy estimators include this notion
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of embedding dimension into their formulation. Longer m allows more detailed

reconstruction of the dynamic process. However, a large value of m may also be

unfavourable because of the need for a very large number of sample points and very

high computation time. However, the role of m in the estimators varies depending

on whether they are based on the concept of CE or not, and this is reflected in

the requirements when setting up values for this parameter. For ApEn, SampEn,

and FuzzyEn, it is recommended to have at least 10m − 20m sample points in the

analysed signal.29 For PermEn, DispEn, and FDispEn, it is recommended to have

at least (m+1)!,32 ln(cm),27 and ln((2c−1)m−1)34 sample points, respectively. The

latter set of techniques see a pattern as essentially an arrangement and character-

ized by the order of the elements of which it is made, rather than by the intrinsic

nature of these elements.183,184 Therefore, it is highly recommended to have at least

two elements in a pattern and so we suggest to set m > 1 for entropy approaches

that count patterns (i.e., PermEn, DispEn, and FDispEn). We also note that a

number of so-called ”non-uniform embedding” methods have been proposed in the

recent past, which employ strategies for the selection of the optimal time-lagged

components (i.e., selection of the lag l of variables Xn−l, 1 ≤ l ≤ M,M > m, that

contribute most to Xn) in order to cover sufficiently the past history of the observed

process while keeping small the number m of components effectively selected (e.g.,

see Ref.69 and references therein).

The parameter r used in ApEn and SampEn represents a trade-off between

the quality of logarithmic likelihood estimates and losing too much detail in the

signal. When r is too small, poor conditional probability estimates are achieved.

Furthermore, to avoid the effect of noise on data, larger r is recommended. In

contrast, for a large r value, too much detailed data information is lost. Therefore,

a trade-off between large and small r values is needed.29,31 Lake et al. proposed

an approach to optimally select r.185 However, as it is needed to calculate SampEn

for a range of r and pick the value that optimizes an efficiency metric, this may

be time-consuming.186 To alleviate this problem, a method based on the heuristic

stochastic model was proposed to automatically determine r.186 However, this

approach still considers a number of r values leading to the computational burden.

In the literature, it is common to set the threshold r as a constant (usually between

0.1 to 0.3) multiplied by the standard deviation (SD) of the original signal.8,29,31

This strategy makes SampEn a scale-invariant measure.29,185

Methods derived from SampEn sought to remove the dependency on r. This

was, at least partially, the motivation behind DistEn.33 Likewise, FuzzyEn tries to

avoid the hard threshold imposed by the use of a Heaviside function to determine

the presence of a match. This is, instead, replaced by a fuzzy membership function

(MFs). Potential types of MFs include triangular, trapezoidal, Z-shaped, bell-

shaped, Gaussian, constant-Gaussian, and exponential functions.43 Still, the shape

and parameters of the MF still relates to the trade-off represented by r for SampEn

and ApEn. A defuzzification approach using a surrogate parameter called ’center of
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gravity’ (Cr) has recently been proposed to re-enable a fair and direct comparison

between different types of entropy estimators in this family. It was suggested setting

Cr = 0.1 for all the MFs.43

The parameter c in DispEn and FDispEn, similarly to the parameter Q in

CorCE, balances the quantity of entropy estimates with the loss of signal informa-

tion. To avoid the impact of noise on signals, a small c is recommended. Nonethe-

less, for a small value of c, too much detailed data information is lost, leading to

poor entropy estimates. In contrast, a large value of c increases the computation

time considerably. Thus, a trade-off between large and small c values is needed. The

number of classes c in DispEn and FDispEn, as well as the number of quantization

levels Q in corCE, is inversely related to the threshold value r used in the ApEn

and SampEn algorithms.34

According to the previous entropy-based approaches, the time delay (L) is usu-

ally set to 1. Nevertheless, if the sampling frequency is considerably larger than the

highest frequency component of a time series (i.e., the signal is highly oversampled),

the first minimum or zero crossing of the autocorrelation function or MI can be used

for the selection of an appropriate time delay.187 As an alternative, a time series

may be downsampled before calculating entropy approaches to adjust its highest

frequency component to its Nyquist frequency (fs/2).188

4.2. Experimental validation

In order to explore the dependencies between the results of some entropy estimators

empirically, here we consider three different kinds of commonly used benchmarks

in biomedical signal analysis: 1) Bonn epilepsy EEG dataset; 2) Fantasia blood

pressure dataset; and 3) BIDMC congestive heart failure RR interval data. We

then apply exemplars of entropy estimators to the signals in those datasets.

The first dataset selected for this experiment is part ’Bonn epilepsy dataset’

curated by R.G. Andrzejak.4,189 This dataset includes five separate sets (denoted

’A’ to ’E’) with 100 single-channel EEG signals each. The length of each signal is

23.6s and they were sampled at 173.61Hz, leading to a total length of 4097 samples.

The signals were extracted from continues multi-channel EEG acquisitions following

a visual inspection for artefacts. The signals were hardware-filtered between 0.5Hz

and 85Hz, and the stationarity of the segments was verified.4 Out of the five sets

of signals, we used in our analysis dataset ’A’, which corresponds to scalp EEG

signals recordings from five healthy subjects with eyes open. We focus on this set

as it contains activity typically representative of broadband signals with a dominant

rhythm (α band in this case) and without the dominant nonlinear discharges that

characterise ictal signals. For further information about these datasets, please,

see.4,189

The second dataset is Fantasia (publicly-available at190,191). The dataset in-

cludes 10 young (21-34 years old) and 10 old (68-85 years old) rigorously-screened

healthy individuals who underwent about 120 minutes of continuous supine resting
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while uncalibrated non-invasive blood pressure signals were recorded. Each group

consisted of 5 women and 5 men.192 All 20 individuals remained in an inactive

state in sinus rhythm when watching the movie Fantasia (Disney, 1940) to help to

maintain wakefulness. For each subject, the time series were digitized at 250 Hz.

Detailed information can be found in.192

The third dataset is BIDMC congestive heart failure (publicly-available

at190,191). This database includes long-term ECG recordings from 15 individuals

(11 men, aged 22 to 71, and 4 women, aged 54 to 63) with severe congestive heart

failure (NYHA class 3–4). The recordings are about 20 hours in duration for each

person (we used the first 1 hour data for each subject) and sampled at 250 samples

per second. We analyzed RR interval time series extracted from the ECG data.

For each dataset, linear conditional entropy (LinCE), corrected CE (CorCE),

SampEn, FuzzyEnLoc (FuzzyEn based on local characteristics43), FuzzyEnGl

(FuzzyEn based on global characteristics43), DistEn, PermEn, DispEn, and FDis-

pEn values for m = 2, 3, 4 in addition to KL entropy with k = 1 were calculated. To

measure the strength of the relationship between the values obtained from different

entropy methods, the correlation coefficients of these entropy values were obtained

(see Fig. 2). Only the coefficients greater than 0.7 (strong positive relationship)

are shown. The threshold r for SampEn was 0.2 times the SD of the signal.29

The number of quantization levels for CorCE was Q = 6.30 Cr for FuzzyEn with

the Gaussian membership function was 0.1253 times the standard deviation of the

signal.43 The number of classes c for DispEn and FDispEn was set 6.34 The his-

togram’s bin size was 512 for DistEn.33 The time delay was equal to 1 for all the

methods.

Overall, the results for the three different kinds of biomedical data (i.e., EEGs,

RR interval data, and blood pressure) are consistent. For each entropy estimator

other than PermEn, the entropy values obtained with different values of m are

strongly correlated. Across techniques, the results also show that PermEn, and

DistEn values are not strongly correlated with the other entropy methods, agreeing

with the fact that the theoretical foundations of these methods are relatively dis-

tinct to the others, as described in Sec. 3. The values based on CorCE, SampEn,

FuzzyEnLoc, and FuzzyEnGl are strongly correlated, in agreement with the fact that

their algorithms are based on the same principles. Similarly, DispEn and FDispEn

values are strongly correlated for different m values. Interestingly, the DispEn and

FDispEn values are correlated with those for SampEn, FuzzyEnLoc, and FuzzyEnGl.

Occasionally, previous research had also studied the dependencies, and correla-

tions or complementarity, in the outputs of nonlinear signal descriptors applied to

the same dataset. An example of highly correlated results is the work by Abásolo et

al. that showed a high level of correlation between ApEn and the rate of decrease of

the automutual information when applied to EEG activity.193 Porta et al. compared

linear estimates of the CE with a range of nonlinear CE estimates (including bin-

ning estimates, ApEn and SampEn, and nearest neighbor estimates) in recordings
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(a) Bonn epilepsy EEG data.
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(b) Fantasia blood pressure data.
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(c) BIDMC congestive heart failure RR interval data.

Fig. 2.: Correlation coefficients obtained from LinCE, CorCE, SampEn,

FuzzyEnLoc, FuzzyEnGl, DistrEn, PermEn, DispEn, and FDispEn with m = 2, 3, 4

for (a) Bonn epilepsy EEG data, (b) Fantasia blood pressure data, and (c) BIDMC

congestive heart failure RR interval data. Only the coefficients greater than 0.7 are

shown.

of heart rate variability measured during postural stress, reporting high correlation

between the linear model-based approach and the nonlinear model-free methods.41

Garćıa et al. reviewed the performance of diverse nonlinear estimators when ap-

plied to electroencephalographic recordings for emotion recognition.194 Their work

showed that categories of nonlinear analyses based on different principles may lead

to slightly different results when applied to the same problems.194 For this reason,

it is essential to bear in mind the theoretical foundations of the range of nonlinear

analysis available when selecting what analysis tools will be selected for a particu-

lar problem. Overall, divergences in the results computed with different nonlinear

analysis techniques (if chosen appropriately) should not considered as detrimental to

the work but, instead, as potentially complementary in providing alternative view-
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points of the same phenomenon. Likewise, wisely chosen linear parameters could

complement the characterisation of signals achieved with nonlinear methods.195

5. Computational efficiency

It is important to consider the computational cost and efficiency of the entropy

estimators when used to analyse large datasets and/or long signals. The computa-

tional time of some of the techniques covered in this chapter varies widely. Entropy

measures such as those covered in Sec. 3.2 quantise the time series and they tend

to be fast. The parametric methods described in Sec. 3.7 rely on estimating linear

regressions in the time series, something that results in high efficiency as well. In

contrast, the algorithms of other entropy metrics such as ApEn, SampEn, FuzzyEn,

DistEn, PermEn, DispEn, and FDispEn require the comparison of patterns along

the signal. Depending on their approach and implementation, this can lead to very

substantial differences in their computational time.

Metrics derived from ApEn need to scan the time series for patterns of length m

and m+1 and then either to identify when a match is found (ApEn and SampEn)29

or to record the distances between them (FuzzyEn and DistEn).33,43 This results

in implementations that depend quadratically on the length of the signal: their

computational time is O(N2). Some other parameters, such as the length of the

patterns (m) or the precise definition of the fuzzy function in FuzzyEn (n)43 play a

smaller role in the computational complexity of the algorithms, although in certain

computing platforms – such as Matlab – the efficiency of the exponential functions

may depend on whether the exponent is interger or not.

In contrast, methods such as PermEn, DispEn, and FDispEn simply evaluate

the frequency of patterns of symbols derived from m-tuples of samples taken along

the signal.27,32 This means that the time series has to be scanned only once and, as

a result, the computational time depends linearly on the number of samples: O(N).

In order to show empirically the dependency of the computational time on the

length of the signals, Table 1 displays the computational time of LinCE, CorCE,

SampEn, FuzzyEn, DistEn, PermEn, DispEn, and FDispEn when applied to white

Gaussian noise sequences of varying length. All the simulations in this article have

been carried out using a PC with Intel (R) Xeon (R) CPU, E5420, 2.5 GHz and

8-GB RAM by MATLAB R2019a. The embedding dimension values change from 2

to 4 for all the methods.

The results demonstrate the different dependency of the entropy estimators on

the data length. Methods with an O(N2) computational cost (i.e., SampEn and

FuzzyEn) show steeper increases in time with data length. In addition, the results

in Table 1 also allow us to explore the effects of varying values of pattern length

(m). Overall, the computation times of LinCE, SampEn, FuzzyEn, and DistEn

with various values of m are similar, while the effect of m is stronger for CorCE,

PermEn, DispEn, and FDispEn. The results also confirm that SampEn is faster

than FuzzyEn due to its simpler use of a Heaviside function to determine matches
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Table 1.: Computation time of LinCE, CorCE, SampEn, FuzzyEn, DistEn, PermEn,

DispEn, and FDispEn with m = 2, 3, 4 for white Gaussian noise with different

lengths (300, 1000, 3,000, 10,000, and 30,000 sample points).

Number of samples → 300 1,000 3,000 10,000 30,000

LinCE (m = 2) 3.7278e-05 s 2.9181e-05 s 2.9029e-05 s 2.8987e-05 s 2.8714e-05 s
LinCE (m = 3) 3.1635e-05 s 2.878e-05 s 2.9121e-05 s 2.8755e-05 s 2.9218e-05 s

LinCE (m = 4) 3.0366e-05 s 2.9708e-05 s 2.8874e-05 s 2.8442e-05 s 2.8578e-05 s

CorCE (m = 2) 0.0033 s 0.0028 s 0.0038 s 0.0102 s 0.0196 s

CorCE (m = 3) 0.0128 s 0.0164 s 0.0216 s 0.0447 s 0.1023 s

CorCE (m = 4) 0.0192 s 0.0511 s 0.1113 s 0.2932 s 0.6412 s

SampEn (m = 2) 0.0004 s 0.0033 s 0.0308 s 0.3495 s 2.9524 s
SampEn (m = 3) 0.0004 s 0.0033 s 0.0311 s 0.3527 s 2.9937 s

SampEn (m = 4) 0.0004 s 0.0033 s 0.0301 s 0.3525 s 2.9656 s

FuzzyEn (m = 2) 0.0006 s 0.0031 s 0.0378 s 0.4595 s 3.8613 s

FuzzyEn (m = 3) 0.0006 s 0.0032 s 0.0378 s 0.4742 s 3.7652 s
FuzzyEn (m = 4) 0.0006 s 0.0032 s 0.0385 s 0.4667 s 3.9627 s

DistEn (m = 2) 0.0011 s 0.0074 s 0.0674 s 0.7556 s 6.7645 s

DistEn (m = 3) 0.0010 s 0.0074 s 0.0680 s 0.7388 s 6.7904 s

DistEn (m = 4) 0.0011 s 0.0075 s 0.0673 s 0.7592 s 6.8346 s

PermEn (m = 2) 0.0007 s 0.0018 s 0.0053 s 0.0167 s 0.0519 s

PermEn (m = 3) 0.0010 s 0.0029 s 0.0082 s 0.0273 s 0.0831 s
PermEn (m = 4) 0.0027 s 0.0079 s 0.0225 s 0.0740 s 0.2281 s

DispEn (m = 2) 0.0002 s 0.0003 s 0.0005 s 0.0014 s 0.0034 s

DispEn (m = 3) 0.0005 s 0.0007 s 0.0014 s 0.0041 s 0.0104 s

DispEn (m = 4) 0.0021 s 0.0029 s 0.0057 s 0.0188 s 0.0507 s

FDispEn (m = 2) 0.0002 s 0.0002 s 0.0005 s 0.0012 s 0.0029 s
FDispEn (m = 3) 0.0004 s 0.0006 s 0.0011 s 0.0031 s 0.0071 s

FDispEn (m = 4) 0.0021 s 0.0032 s 0.0079 s 0.0192 s 0.0457 s

between patterns.

We can also see that, while the differences in computational time are negligible

for short signal segments, they become more severe for longer signals. Overall,

LinCE, DispEn and FDispEn tend to be the faster algorithms in this comparison,

followed by PermEn. This agrees with the computational costs stated above and

with the fact that these methods does not need to neither sort the amplitude values

of each embedded vector (like PermEn) nor calculate every distance between any

two composite delay vectors with embedding dimensions m and m+1 (like SampEn

and FuzzyEn). This makes these noticeably faster than PermEn, SampEn, and

FuzzyEn.

It is important to note these results are based on straightforward implementa-

tions of the algorithms but there has been research to speed up the computation of

the entropy estimators by developing more efficient algorithms. For example, Jiang

et al. proposed a tree structure to compute SampEn.196 Manis et al. speed up the

algorithm for SampEn even further by devising algorithms that avoid unnecessary

pattern comparisons.197 They demonstrated speeding up factors of between 4 and

10 in comparison with the straightforward implementation, depending on the values

of m and r. One must be aware that the optimal implementation of any method
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may also depend on the programming language. The same algorithm may be very

efficient in one but not in other languages, due to the correct usage of the most

efficient data structures offered by the different programming languages.

Finally, it is worth noting that GPU-based implementations have been proposed

for entropy analysis of multivariate signals.198,199 Given the increasing popularity

and relevance of GPU computing, this provides an avenue worth exploring when

analysing long signals or large datasets.

6. Limitations and advantages

As mentioned before, ApEn and its improvements, i.e., SampEn and FuzzyEn,

as well as corCE, are based on different principles compared to PermEn, DistEn,

DipsEn, and FDispEn, meaning that ApEn, SampEn, and FuzzyEn denote the rate

of information production (conditional entropy) whereas PermEn, DistEn, DispEn,

and FDispEn quantify the total amount of information (Shannon entropy). Nev-

ertheless, the comparison of these methods as different kinds of feature extraction

approaches is meaningful and many studies based on one- and two-dimensional

entropy methods showed their similar behaviors.

SampEn alleviates some shortcomings of ApEn.29,200 First, ApEn inherently

includes a bias towards regularity or complexity, as it counts a self-match of vec-

tors while SampEn does not count a self-match and so eliminates the bias towards

regularity. Second, ApEn lacks relative consistency, as the input parameters are

changed, the value of ApEn, unlike SampEn, may ”flip”. For instance, white noise

may have a much smaller ApEn value than a known periodic signal when one param-

eter of ApEn is set very small. Eventually this will “flip” and the ApEn value will

become greater in the white noise time series as the input parameters are changed.

Third, the parameters of ApEn should be fixed and comparing data should only

be done when the input parameters are the same for both datasets due to the is-

sue of relative consistency and also the overall sensitivity of the algorithm to the

parameters of choice and to data length.200

Although SampEn is not sensitive to a noise with a low amplitude compared

with the original signal, it is either undefined or unreliable for short signals and

computationally expensive for real-time applications. SampEn is also sensitive to

its parameters, especially to the tolerance factor r. FuzzyEn alleviates the problem

of undefined values of SampEn. Additionally, FuzzyEn, compared with ApEn and

SampEn, is less sensitive to its parameters and even data length. Nevertheless, the

FuzzyEn algorithm is considerably slower than SampEn when dealing with a long

time series or a large embedding dimension.

Among the MFs used for FuzzyEn,43 when dealing with an equal value of the

center of gravity, the Gaussian MF, as the fastest algorithm, results in the highest

Hedges’ g effect size for long signals. FuzzyEn based on exponential MF of order

four better distinguishes short white, pink, and brown noises, and yields more sig-

nificant differences for the short real signals based on Hedges’ g effect size. The
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triangular, trapezoidal, and Z-shaped MFs are not recommended for short signals

as the FuzzyEn values may be undefined. FuzzyEn with Gaussian and exponen-

tial MF of order four for respectively characterization of short and long data are

suggested.

The DistEn technique, unlike SampEn, does not lead to undefined entropy val-

ues. DistEn is also not sensitive to a noise with a low amplitude compared with

the original signal. Nevertheless, it has two main limitations. First, since the total

number of elements in distance matrix D is (N −m)(N −m − 1), for a long time

series the computation of DistEn, compared with DispEn and PerEn, needs the

storage of a large number of elements. More importantly, according to the DistEn

algorithm, new signals created simply by random permutations of an original time

series (shuffling data) have DistEn values close to that for the original time series.

For example, if the elements of a signal are sorted, its DistEn value is not changed

noticeably. However, as expected theoretically and intuitively, sorting leads to a

lower entropy value (less irregularity).

PermEn is computationally fast, thus facilitating its use in real time applications.

This approach also can be used for both short and long signals. Nevertheless, it has

three main shortcomings since it considers permutation patterns of a signal. First,

the original PermEn assumes a signal has a continuous distribution, thus equal

values are infrequent and can be disregarded by ranking them based on the order

of their emergence. For digitized signals with coarse quantization levels, yet, it may

be imprecise to simply disregard them.201 Second, when a time series is symbolized

based on the permutation patterns (Bandt-Pompe procedure), only the order of

amplitudes is considered and some information with regard to the amplitude values

may be ignored.34,201 Third, PermEn is sensitive to noise (even when the SNR

of a data is high), because a small change in amplitude value may vary the order

relations among amplitudes.34

DispEn and FDispEn, which are based on Shannon entropy, are computationally

fast. These methods, ApEn, and SampEn have similar behavior when dealing with

noise. In ApEn and SampEn, only the number of matches whose differences are

smaller than a defined threshold is counted. Accordingly, a small change in the

time series amplitude due to noise is unlikely to change ApEn or SampEn values.

Similarly, in DispEn and FDispEn, a small change will probably not alter the index

of class and so the entropy value will not change. Thus, ApEn, SampEn, DispEn,

and FDispEn are relatively robust to noise (especially for signals with high SNR).

DispEn and FDispEn, compared with ApEn, SampEn, FuzzyEn, and DistEn, needs

to store a considerably smaller number of elements. For short signals, DispEn and

FDispEn also do not result in undefined values. Nevertheless, DispEn and FDispEn

are sensitive to signal length especially for short time series and high m or c values.

Additionally, DispEn and FDispEn, like PermEn, are based on symbolic dynamics

or patterns originated from a coarse-graining of the measurements, that is, the data

are transformed into a new signal with only a few different elements. Therefore,



October 6, 2020 7:36 ws-rv961x669 Book Title output page 42

42

the study of the dynamics of time series is simplified to a distribution of symbol

sequences. Although some of the invariant, robust properties of the dynamics may

be kept, some of detailed information may be lost.202–204

7. Conclusions, and future directions

As nonlinearity and complexity are ubiquitous in living systems, there is little room

for doubt that complex nonlinear dynamical systems better describe physiological

regulations. Thus, there is an increasing interest in nonlinear approaches to char-

acterize physiological signals generated by such physiological regulations. These

signals may be exploited to detect physiological states, to monitor the health con-

ditions over time, or to predict pathological events. One of the most popular and

powerful nonlinear approaches used to assess the dynamical characteristics of time

series is entropy.

In this chapter, we explained the basic concepts of probability and information

theory used to define entropy metrics for biomedical signal processing. In addition

to the nearest neighbors and parametric approaches, approximate, sample, fuzzy,

permutation, distribution, dispersion entropies were detailed based on Shannon en-

tropy, conditional entropy, and information storage. The entropy methods were

then systematically compared from different theoretical, computational and practi-

cal views and their advantages and disadvantages were explained. We discussed how

to set the parameters used in these entropy methods and their relationships. We

also evaluated the dependencies between some nonlinear entropy measures due to

their shared foundations. In order to explore the dependencies between the results

of some entropy estimators empirically, we used three different kinds of biomedical

times series (i.e., EEGs, RR interval data, and blood pressures).

The study done here has also the following implications for complexity or irreg-

ularity estimations. First, PermEn and DistEn values are not strongly correlated

with the other entropy methods. The results of SampEn, and FuzzyEn, like those

for DispEn and FDispEn, when applied to the same dataset, were strongly corre-

lated. It was found that LinCE, FDispEn and DispEn are the fastest algorithms

for white Gaussian noise with different lengths, followed by PermEn.

In spite of a large number of interesting studies about entropy-based approaches

in the literature, there are still some challenges open to future investigation.

Firstly, although there are some suggestions about how to set the parameters

used for the entropy methods (e.g., Refs30,43,185,186), there is still room to provide

new insights and propose new techniques to find appropriate set of parameters for

various data and applications. This is particularly important to avoid p-hacking.

Even though the results in Sec. 5 are reassuring regarding the consistency of the

results estimated with diverse entropy methods and parameters, one should define

the parameters of the estimators a priori using the best guidance available and

report clearly any process used to fine-tune the parameters.

Secondly, most biomedical signals, such as EEGs, HRVs, EMGs, and MEGs,
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are usually non-stationary. This important issue needs to be taken into account

before applying entropy measures that are strictly speaking only applicable to sta-

tionary time series. To this end, a biomedical signal is typically divided into short

quasi-stationary segments and then the entropy of each segment is calculated. Nev-

ertheless, there is a real need to propose entropy-based approaches to analyze non-

stationary time series (e.g., any trends before applying an entropy method can be

removed).

Thirdly, establishing the relationships between entropy estimators and other

nonlinear methods, such as Lempel-Ziv complexity and fractal dimension, from em-

pirical and theoretical perspectives is another potential feature of interest for future

studies. For example, initial work has explored these relationships to understand

the dependencies between complexity estimators and the synchrony of mean field

models with simple oscillators coupled through a network.205 Overall, the study

of the interplay between complex networks, nonlinear analysis, and computational

models can help us to understand the rules behind complex phenomena, and to

monitor them.206

Finally, and in relation to the previous point and as Sec. 2.3 indicated, the

hallmark of complex systems is the very large number of nonlinear interdependences

among the elements that compose them.59 This demands multivariate approaches

to compute entropy measures from more than one signal. Overall, these approaches

can be divided into methods focusing on the computation of directed information

measures between two or more stochastic processes55,60,69,207 and the simultaneous

estimation of entropy from more than one signal component.61–64 Both groups of

techniques have already been used in the characterisation of biomedical recordings,

and we expect the relevance of this area to increase in the coming years.

Overall, entropy-based metrics are now recognised as practical alternative to

classical nonlinear analysis methods to study the dynamics of various kinds of sys-

tems, including biomedical signals. These approaches enable the evaluation of the

degree of irregularity and complexity of such systems. The evidence gathered in this

review shows the relevance of these approaches in multiple biomedical applications

and their theoretical foundations and several promising areas for future research.

We expect that entropy analysis will become an even more prominent field within

biomedical signal analysis in the near future.
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